

Table of contents
Preface 4

Prerequisites . 4
Motivation and FAQ . 4
Conventions . 4
Acknowledgements . 5
Feedback and Errata . 5
Author info . 5
License . 5
Book version . 5

Introduction 6
Installation . 6
Online tools . 6
First program . 7
IDE and text editors . 7
REPL . 8
Documentation and getting help . 9

Numeric data types 12
int . 12
float . 12
Arithmetic operators . 13
Operator precedence . 14
Integer formats . 14
Other numeric types . 15

Strings and user input 16
Single and double quoted strings . 16
Triple quoted strings . 17
Raw strings . 17
String operators . 18
String formatting . 19
User input . 21
Type conversion . 21
Exercises . 22

Defining functions 23
def . 23
Accepting arguments . 24
Default valued arguments . 25
Return value . 26
A closer look at the print() function . 26
Docstrings . 28

Control structures 29
Comparison operators . 29
Truthy and Falsy values . 29
Boolean operators . 30
Comparison chaining . 31

2

Membership operator . 31
if-elif-else . 32
Ternary operator . 32
for loop . 33
while loop . 34
break and continue . 34
Assignment expression . 35
Exercises . 36

3

Preface

This book is a short, introductory guide for the Python programming language. This book is
well suited:

• As a reference material for Python beginner workshops
• If you have prior experience with another programming language
• If you want a complement resource after reading a Python basics book, watching a video
course, etc

Prerequisites

You should be already familiar with basic programming concepts. If you are new to program-
ming, I’d highly recommended my comprehensive curated list to get started.

Motivation and FAQ

I’ve been conducting a few Python introduction workshops for college students and faculty for
the past four years (which came to a premature end thanks to the pandemic). These students
were already familiar with another programming languages such as C , Java , etc. I used to
provide my notes in PDF format as a workshop reference material, further reading resources,
etc. After I started writing a book titled Practice Python Projects, I realized I’d be better
served by improving my Python knowledge first. What better way to do it than writing a book?

Why is it called 100 Page Python Intro when it has more than 100 pages?

There are 2 hard problems in computer science: cache invalidation, naming things, and
off-by-1 errors — Leon Bambrick

The material I was using for my workshops was 56 pages. I had more chapters to add, but
I thought it would be a struggle to reach 100 pages, instead of overshooting the goal in the
end. The measurement also depends on a few factors. The main content will be less than 100
pages if I reduce the font size from 12 to 11, exclude cover, TOC, Preface, etc.

Conventions

• The examples presented here have been tested with Python version 3.9.0 and includes
features that are not available in earlier versions.

• Code snippets that are copy pasted from the Python REPL shell have been modified for
presentation purposes. For example, comments to provide context and explanations,
blank lines and shortened error messages to improve readability and so on.

• A comment with filename will be shown as the first line for program files.
• External links are provided for further exploration throughout the book. They have been
chosen with care to provide more detailed resources on those topics as well as resources
on related topics.

• The 100_page_python_intro repo has all the programs and files presented in this book,
organized by chapter for convenience.

4

https://learnbyexample.github.io/py_resources/
https://learnbyexample.github.io/practice_python_projects/
https://github.com/learnbyexample/100_page_python_intro/tree/main/programs

Acknowledgements

• Offical Python website — documentation and examples
• stackoverflow and unix.stackexchange — for getting answers to pertinent questions on
Python, Shell and programming in general

• /r/learnpython and /r/learnprogramming — helpful forum for beginners
• /r/Python/ — general Python discussion
• tex.stackexchange — for help on pandoc and tex related questions
• Cover image:

∘ Ilsa Olson — cover art
∘ LibreOffice Draw — title/author text

• pngquant and svgcleaner for optimizing images
• Warning and Info icons by Amada44 under public domain

Feedback and Errata

I would highly appreciate if you’d let me know how you felt about this book, it would help to
improve this book as well as my future attempts. Also, please do let me know if you spot any
error or typo.

Issue Manager: https://github.com/learnbyexample/100_page_python_intro/issues

E-mail: learnbyexample.net@gmail.com

Twitter: https://twitter.com/learn_byexample

Author info

Sundeep Agarwal is a freelance trainer, author and mentor. His previous experience includes
working as a Design Engineer at Analog Devices for more than 5 years. You can find his other
works, primarily focused on Linux command line, text processing, scripting languages and
curated lists, at https://github.com/learnbyexample. He has also been a technical reviewer for
Command Line Fundamentals book and video course published by Packt.

List of books: https://learnbyexample.github.io/books/

License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License

Code snippets are available under MIT License

Images mentioned in Acknowledgements section above are available under original licenses.

Book version

1.0
See Version_changes.md to track changes across book versions.

5

https://docs.python.org/3/
https://stackoverflow.com/
https://unix.stackexchange.com/
https://www.reddit.com/r/learnpython
https://www.reddit.com/r/learnprogramming
https://www.reddit.com/r/Python/
https://tex.stackexchange.com/
https://github.com/jgm/pandoc/
https://ko-fi.com/profetessaoscura
https://www.libreoffice.org/discover/draw/
https://pngquant.org/
https://github.com/RazrFalcon/svgcleaner
https://commons.wikimedia.org/wiki/File:Warning_icon.svg
https://commons.wikimedia.org/wiki/File:Info_icon_002.svg
https://commons.wikimedia.org/wiki/User:Amada44
https://github.com/learnbyexample/100_page_python_intro/issues
mailto:learnbyexample.net@gmail.com
https://twitter.com/learn_byexample
https://github.com/learnbyexample
https://www.packtpub.com/application-development/command-line-fundamentals
https://learnbyexample.github.io/books/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://github.com/learnbyexample/100_page_python_intro/blob/main/LICENSE
https://github.com/learnbyexample/100_page_python_intro/blob/main/Version_changes.md

Introduction

Wikipedia does a great job of describing about Python in a few words. So, I’ll just copy-paste
relevant information here:

Python is an interpreted, high-level and general-purpose programming language.
Python’s design philosophy emphasizes code readability with its notable use of signif-
icant whitespace. Its language constructs and object-oriented approach aim to help
programmers write clear, logical code for small and large-scale projects.
Python is dynamically typed and garbage-collected. It supports multiple programming
paradigms, including structured (particularly, procedural), object-oriented, and func-
tional programming. Python is often described as a ”batteries included” language due
to its comprehensive standard library.
As of December 2020 Python ranked third in TIOBE’s index of most popular program-
ming languages, behind C and Java .

See also docs.python: General Python FAQ for answers to questions like ”What is
Python?”, ”What is Python good for?”, ”Why is it called Python?”, etc.

Installation

On modern Linux distributions, you are likely to find Python already installed. It may be a few
versions behind, but should work just fine for most of the topics covered in this book. To get
the exact version used here, visit Python downloads page and install using the appropriate
source for your operating system. Should you face any issues in installing, search online for
a solution. Yes, that is something I expect you should be able to do as a prerequisite for this
book, i.e. you should have prior experience with basic programming and computer usage.

See docs.python: What’s New to track changes across versions. As mentioned in
the Preface chapter, 3.9.0 is the version used in this book.

Online tools

In case you are facing installation issues, or do not want to (or cannot) install Python on your
computer for some reason, there are plenty of options to execute Python programs using online
tools. Some of the popular ones are listed below:

• Repl.it — Interactive playground. Code, collaborate, compile, run, share, and deploy
Python and more online from your browser

• Pythontutor — Visualize code execution, also has example codes and ability to share
sessions

• PythonAnywhere — Host, run, and code Python in the cloud

The offical Pythonwebsite also has a Launch Interactive Shell option (https://www.python.org/shell/),
which gives access to a REPL session.

6

https://en.wikipedia.org/wiki/Python_(programming_language)
https://docs.python.org/3/faq/general.html
https://www.python.org/downloads/
https://docs.python.org/3/whatsnew/index.html
https://repl.it/languages/python3
http://www.pythontutor.com/visualize.html#mode=edit
https://www.pythonanywhere.com/
https://www.python.org/
https://www.python.org/shell/

First program

It is customary to start learning a new programming language by printing a simple phrase.
Create a new directory, say Python/programs for this book. Then, create a plain text file
named hello.py with your favorite text editor and type the following piece of code.

hello.py
print('*************')
print('Hello there!')
print('*************')

If you are familiar with using command line on a Unix-like system, run the script as shown
below. Other options to execute a Python program will be discussed in the next section.

$ python3.9 hello.py

Hello there!

A few things to note here. The first line is a comment, used here to indicate the name of
the Python program. print() is a built-in function, which can be used without having to
load some library. A single string argument has been used for each of the three invocations.
print() automatically appends a newline character by default. The program ran without a
compilation step. As quoted earlier, Python is an interpreted language. More details will be
discussed in later chapters.

All the Python programs discussed in this book, along with related text files, can
be accessed from my GitHub repo learnbyexample: 100_page_python_intro. However, I
highly recommend typing the programs manually by yourself.

IDE and text editors

An integrated development environment (IDE) might suit you better if you are not com-
fortable with the command line. IDE provides features likes debugging, syntax highlighting,
autocompletion, code refactoring and so on. They also help in setting up virtual environment
to manage different versions of Python and modules (more on that later).

If you install Python on Windows, it will automatically include IDLE, an IDE built using
Python’s tkinter module. On Linux, see if you already have the program idle3.9 . Other-
wise you may have to install it separately, for example, sudo apt install idle-python3.9
on Ubuntu.

When you open IDLE, you’ll get a Python shell (discussed in the next section). For now, click the
New File option under File menu to open a text editor. Type the short program hello.py
discussed in the previous section. After saving the code, press F5 to run it. You’ll see the
results in the shell window.

Screenshots from the text editor and the Python shell are shown below.

7

https://github.com/learnbyexample/100_page_python_intro/tree/main/programs

Popular alternatives to IDLE are listed below:

• Thonny — Python IDE for beginners, lots of handy features like viewing variables, de-
bugger, step through, highlight syntax errors, name completion, etc

• Pycharm — smart code completion, code inspections, on-the-fly error highlighting and
quick-fixes, automated code refactorings, rich navigation capabilities, support for frame-
works, etc

• Spyder — typically used for scientific computing
• Jupyter — web application that allows you to create and share documents that contain
live code, equations, visualizations and narrative text

• VSCodium — community-driven, freely-licensed binary distribution of VSCode
• Vim, Emacs, Geany, Gedit — text editors with support for syntax highlighting and more

REPL

One of the best features of Python is the interactive shell. Such shells are also referred to as
REPL, which is an abbreviation for Read Evaluate Print Loop. The Python REPL makes it easy
for beginners to try out code snippets for learning purposes. Beyond learning, it is also useful
for developing a program in small steps, debugging a large program by trying out few lines of
code at a time and so on. REPL will be used frequently in this book to show code snippets.

When you launch Python from the command line, or open IDLE, you get a shell that is ready
for user input after the >>> prompt.

$ python3.9
Python 3.9.0 (default, Dec 2 2020, 10:42:13)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

8

https://thonny.org/
https://www.jetbrains.com/pycharm/
https://www.spyder-ide.org/
https://jupyter.org/
https://vscodium.com/
https://github.com/vim/vim
https://www.gnu.org/software/emacs/
https://www.geany.org/
https://wiki.gnome.org/Apps/Gedit

Try the below instructions. The first one displays a greeting using the print() function.
Then, a user defined variable is used to store a string value. To display the value, you can
either use print() again or just type the variable name. Expression results are immediately
displayed in the shell. Name of a variable by itself is a valid expression. This behavior is unique
to the REPL and an expression by itself won’t display anything when used inside a script.

>>> print('have a nice day')
have a nice day

>>> username = 'learnbyexample'
>>> print(username)
learnbyexample

use # to start a single line comment
note that string representation is shown instead of actual value
details will be discussed later
>>> username
'learnbyexample'

use exit() to close the shell, can also use Ctrl+D shortcut
>>> exit()

I’ll stress again the importance of following along the code snippets by manually typing them
on your computer. Programming requires hands-on experience too, reading alone isn’t enough.
As an analogy, can you learn to drive a car by just reading about it? Since one of the prereq-
uisite is that you should already be familiar with programming basics, I’ll extend the analogy
to learning to drive a different car model. Or, perhaps a different vehicle such as a truck or a
bus might be more appropriate here.

Depending on the command line shell you are using, you might have the readline
library that makes it easier to use the REPL. For example, up and down arrow
keys to browse code history, re-execute them (after editing if necessary), search history,
autocomplete based on first few characters and so on. See wikipedia: GNU readline and
wiki.archlinux: readline for more information.

You can use python3.9 -q to avoid version and copyright messages when you
start an interactive shell. Use python3.9 -h or visit docs.python: Command line and
environment for documentation on cli options.

Documentation and getting help

The offical Pythonwebsite has an extensive documentation located at https://docs.python.org/3/.
This includes a tutorial, which is much more comprehensive than the contents presented in
this book, several guides for specific modules like re and argparse and various other
information.

Here’s a couple of annotated screenshots:

9

https://en.wikipedia.org/wiki/GNU_Readline
https://wiki.archlinux.org/index.php/readline
https://docs.python.org/3/using/cmdline.html
https://docs.python.org/3/using/cmdline.html
https://docs.python.org/3/

Python provides a help() function, which is quite handy to use from the REPL. If you type
help(print) and press the Enter key, you’ll get a screen as shown below. If you are using

10

IDLE, the output would be displayed on the same screen. Otherwise, the content might be
shown on a different screen depending on your pager settings. Typically, pressing the q
key will quit the pager and get you back to the shell.

Quotes are necessary, for example help('import') and help('del') , if the topic
you are looking for isn’t an object.

If you get stuck with a problem, there are several ways to get it resolved. For example:

1. read/search for that particular topic from documentation/books/tutorials/etc
2. reduce the code as much as possible so that you are left with minimal code necessary to

reproduce the issue
3. talk about the problem with a friend/colleague/inanimate-objects/etc (see Rubber duck

debugging)
4. search about the problem online

You can also ask for help on forums. Make sure to read the instructions provided by the
respective forums before asking a question. See also how to ask smart-questions. Here’s
some forums you can use:

• /r/learnpython and /r/learnprogramming/ — beginner friendly
• python-forum — dedicated Python forum, encourages back and forth discussions based
on the topic of the thread

• /r/Python/ — general Python discussion
• stackoverflow: python tag

The Debugging chapter will discuss more on this topic.

11

https://rubberduckdebugging.com/
https://rubberduckdebugging.com/
http://catb.org/~esr/faqs/smart-questions.html#before
https://www.reddit.com/r/learnpython
https://www.reddit.com/r/learnprogramming/
https://python-forum.io/
https://www.reddit.com/r/Python/
https://stackoverflow.com/tags/python

Numeric data types

Python is a dynamically typed language. The interpreter infers the data type of a value based
on pre-determined rules. In the previous chapter, string values were coded using single
quotes around a sequence of characters. Similarly, there are rules by which you can declare
different numeric data types.

int

Integer numbers are made up of digits 0 to 9 and can be prefixed with unary operators
like + or - . There is no restriction to the size of numbers that can be used, only limited
by the memory available on your system. Here’s some examples:

>>> 42
42
>>> 0
0
>>> +100
100
>>> -5
-5

For readability purposes, you can use underscores in between the digits.

>>> 1_000_000_000
1000000000

Underscore cannot be used as the first or last character, and cannot be used con-
secutively.

float

Here’s some examples for floating-point numbers.

>>> 3.14
3.14
>>> -1.12
-1.12

Python also supports the exponential notation. See wikipedia: E scientific notation for details
about this form of expressing numbers.

>>> 543.15e20
5.4315e+22
>>> 1.5e-5
1.5e-05

Unlike integers, floating-point numbers have a limited precision. While displaying very small
or very large floating-point numbers, Python will automatically convert them to the exponential

12

https://en.wikipedia.org/wiki/Scientific_notation#E_notation

notation.

>>> 0.0000000001234567890123456789
1.2345678901234568e-10
>>> 31415926535897935809629384623048923.649234324234
3.1415926535897936e+34

You might also get seemingly strange results as shown below. See docs.python:
Floating Point Arithmetic Issues and Limitations and stackoverflow: Is floating point
math broken? for details and workarounds.

>>> 3.14 + 2
5.140000000000001

Arithmetic operators

All arithmetic operators you’d typically expect are available. If any operand is a floating-point
number, result will be of float data type. Use + for addition, - for subtraction, *
for multiplication and ** for exponentiation. As mentioned before, REPL is quite useful for
learning purposes. It makes for a good calculator for number crunching as well. You can also
use _ to refer to the result of the previous expression (this is applicable only in the REPL,
not in Python scripts).

>>> 25 + 17
42
>>> 10 - 8
2
>>> 25 * 3.3
82.5
>>> 32 ** 42
1645504557321206042154969182557350504982735865633579863348609024

>>> 5 + 2
7
>>> _ * 3
21

There are two operators for division. Use / if you want a floating-point result. Using //
between two integers will give only the integer portion of the result (no rounding).

>>> 4.5 / 1.5
3.0
>>> 5 / 3
1.6666666666666667
>>> 5 // 3
1

Use modulo operator % to get the remainder. Sign of the result is same as the sign of the
second operand.

13

https://docs.python.org/3/tutorial/floatingpoint.html
https://docs.python.org/3/tutorial/floatingpoint.html
https://stackoverflow.com/q/588004/4082052
https://stackoverflow.com/q/588004/4082052

>>> 5 % 3
2

>>> -5 % 3
1
>>> 5 % -3
-1
>>> 6.5 % -3
-2.5

See docs.python: Binary arithmetic operations and stackoverflow: modulo operation
on negative numbers for more details.

Operator precedence

Arithmetic operator precedence follows the familiar PEMDAS or BODMAS abbreviations.
Precedence, higher to lower is listed below:

• Expression inside parentheses
• exponentiation
• multiplication, division, modulo
• addition, subtraction

Expression is evaluated left-to-right when operators have the same precedence. Unary
operator precedence is between exponentiation and multiplication/division operators. See
docs.python: Operator precedence for complete details.

Integer formats

The integer examples so far have been coded using base 10, i.e. decimal format. Python has
provision for representing binary, octal and hexadecimal formats as well. To distinguish
between these different formats, a prefix is used:

• 0b or 0B for binary
• 0o or 0O for octal
• 0x or 0X for hexadecimal

All four formats fall under the int data type. Python displays them in decimal format by
default. Underscores can be used for readability for any of these formats.

>>> 0b1000_1111
143
>>> 0o10
8
>>> 0x10
16

14

https://docs.python.org/3/reference/expressions.html#binary-arithmetic-operations
https://stackoverflow.com/q/3883004/4082052
https://stackoverflow.com/q/3883004/4082052
https://docs.python.org/3/reference/expressions.html#operator-precedence

>>> 5 + 0xa
15

Decimal format numbers cannot be prefixed by 0 , other than 0 itself.

>>> 00000
0

>>> 09
File "<stdin>", line 1
09
ˆ

SyntaxError: leading zeros in decimal integer literals are not permitted;
use an 0o prefix for octal integers

If code execution hits a snag, you’ll get an error message along with the code snippet that
the interpreter thinks caused the issue. In Python parlance, an exception has occurred. The
exception has a name (SyntaxError in the above example) followed by the error message.
See Exception handling chapter for more details.

Other numeric types

Python’s standard data type also includes complex type (imaginary part is suffixed with the
character j). Others like decimal and fractions are provided as modules.

• docs.python: complex
• docs.python: decimal
• docs.python: fractions

Some of the numeric types can have alphabets like e , b , j , etc in their
values. As Python is a dynamically typed language, you cannot use variable names be-
ginning with a number. Otherwise, it would be impossible to evaluate an expression like
result = input_value + 0x12 - 2j .

There are many third-party libraries that are useful for number crunching in math-
ematical context, engineering applications, etc. See my list py_resources: Scientific
computing for curated resources.

15

https://docs.python.org/3/library/stdtypes.html#typesnumeric
https://docs.python.org/3/library/decimal.html
https://docs.python.org/3/library/fractions.html
https://learnbyexample.github.io/py_resources/domain.html#scientific-computing
https://learnbyexample.github.io/py_resources/domain.html#scientific-computing

Strings and user input

This chapter will discuss various ways to specify string literals. After that, you’ll see how to
get input data from the user and handle type conversions.

Single and double quoted strings

The most common way to declare string literals is by enclosing a sequence of characters within
single or double quotes. Unlike other scripting languages like Bash, Perl and Ruby, there
is no feature difference between these forms. Idiomatically, single quotes are preferred and
other variations are used when needed.

REPL will again be used predominantly in this chapter. One important detail to note is that the
result of an expression is displayed using the syntax of that particular data type. Use print()
function when you want to see how a string literal looks visually.

>>> 'hello'
'hello'

>>> print("world")
world

If the string literal itself contains single or double quote characters, the other form can be
used.

>>> print('"Will you come?" he asked.')
"Will you come?" he asked.

>>> print("it's a fine sunny day")
it's a fine sunny day

What to do if a string literal has both single and double quotes? You can use the \ character
to escape the quote characters. In the below examples, \' and \" will evaluate to ' and
" characters respectively, instead of prematurely terminating the string definition. Use \\
if a literal backslash character is needed.

>>> print('"It\'s so pretty!" can I get one?')
"It's so pretty!" can I get one?

>>> print("\"It's so pretty!\" can I get one?")
"It's so pretty!" can I get one?

In general, the backslash character is used to construct escape sequences. For example, \n
represents the newline character, \t is for tab character and so on. You can use \ooo and
\xhh to represent 256 characters in octal and hexadecimal formats respectively. For Unicode
characters, you can use \N{name} , \uxxxx and \Uxxxxxxxx formats. See docs.python:
String and Bytes literals for full list of escape sequences and details about undefined ones.

>>> greeting = 'hi there.\nhow are you?'
>>> greeting
'hi there.\nhow are you?'
>>> print(greeting)

16

https://docs.python.org/3/reference/lexical_analysis.html#strings
https://docs.python.org/3/reference/lexical_analysis.html#strings

hi there.
how are you?

>>> print('item\tquantity')
item quantity

>>> print('\u03b1\u03bb\u03b5\N{LATIN SMALL LETTER TURNED DELTA}')
αλεƍ

Triple quoted strings

You can also declare multiline strings by enclosing the value with three single/double quote
characters. If backslash is the last character of a line, then a newline won’t be inserted at that
position. Here’s a Python program named triple_quotes.py to illustrate this concept.

triple_quotes.py
print('''hi there.
how are you?''')

student = '''\
Name:\tlearnbyexample
Age:\t25
Dept:\tCSE'''

print(student)

Here’s the output of the above script:

$ python3.9 triple_quotes.py
hi there.
how are you?
Name: learnbyexample
Age: 25
Dept: CSE

See Docstrings section for another use of triple quoted strings.

Raw strings

For certain cases, escape sequences would be too much of a hindrance to workaround. For
example, filepaths in Windows use \ as the delimiter. Another would be regular expressions,
where the backslash character has yet another special meaning. Python provides a raw string
syntax, where all the characters are treated literally. This form, also known as r-strings for
short, requires a r or R character prefix to quoted strings. Forms like triple quoted strings
and raw strings are for user convenience. Internally, there’s just a single representation for
string literals.

17

>>> print(r'item\tquantity')
item\tquantity

>>> r'item\tquantity'
'item\\tquantity'
>>> r'C:\Documents\blog\monsoon_trip.txt'
'C:\\Documents\\blog\\monsoon_trip.txt'

Here’s an example with re built-in module. The import statement used below will be
discussed in Importing and creating modules chapter. See my book Python re(gex)? for details
on regular expressions.

>>> import re

numbers >= 100 with optional leading zeros
>>> re.findall(r'\b0*[1-9]\d{2,}\b', '0501 035 154 12 26 98234')
['0501', '154', '98234']

without raw strings
>>> re.findall('\\b0*[1-9]\d{2,}\\b', '0501 035 154 12 26 98234')
['0501', '154', '98234']

String operators

Python provides a wide variety of features to work with strings. This chapter introduces some
of them, like the + and * operators in this section. Here’s some examples to concatenate
strings using the + operator. The operands can be any expression that results in a string
value and you can use any of the different ways to specify a string literal.

>>> str1 = 'hello'
>>> str2 = ' world'
>>> str3 = str1 + str2
>>> print(str3)
hello world

>>> str3 + r'. 1\n2'
'hello world. 1\\n2'

Another way to concatenate is to simply place any kind of string literal next to each other. You
can use zero or more whitespaces between the two literals. But you cannot mix an expression
and a string literal. If the strings are inside parentheses, you can also use newline to separate
the literals and optionally use comments.

>>> 'hello' r' 1\n2\\3'
'hello 1\\n2\\\\3'

note that ... is REPL's indication for multiline statements, blocks, etc
>>> print('hi '
... 'there')
hi there

18

https://github.com/learnbyexample/py_regular_expressions

You can repeat a string by using the * operator between a string and an integer.

>>> style_char = '-'
>>> print(style_char * 50)
--
>>> word = 'buffalo '
>>> print(8 * word)
buffalo buffalo buffalo buffalo buffalo buffalo buffalo buffalo

String formatting

As per PEP 20: The Zen of Python,

There should be one-- and preferably only one --obvious way to do it.

However, there are several approaches for formatting strings. This section will focus mostly
on formatted string literals (f-strings for short). And then show alternate approaches.

f-strings allow you to embed an expression within {} characters as part of the string literal.
Like raw strings, you need to use a prefix, which is f or F in this case. Python will substitute
the embeds with the result of the expression, converting it to string if necessary (such as
numeric results). See docs.python: Format String Syntax and docs.python: Formatted string
literals for documentation and more examples.

>>> str1 = 'hello'
>>> str2 = ' world'
>>> f'{str1}{str2}'
'hello world'

>>> f'{str1}({str2 * 3})'
'hello(world world world)'

A recent feature allows you to add = after an expression to get both the expression and the
result in the output.

>>> num1 = 42
>>> num2 = 7

>>> f'{num1 + num2 = }'
'num1 + num2 = 49'
>>> f'{num1 + (num2 * 10) = }'
'num1 + (num2 * 10) = 112'

Optionally, you can provide a format specifier along with the expression after a : charac-
ter. These specifiers are similar to the ones provided by printf() function in C language,
printf built-in command in Bash and so on. Here’s some examples for numeric formatting.

>>> appx_pi = 22 / 7

restricting number of digits after the decimal point
>>> f'Approx pi: {appx_pi:.5f}'

19

https://www.python.org/dev/peps/pep-0020/
https://docs.python.org/3/library/string.html#formatstrings
https://docs.python.org/3/reference/lexical_analysis.html#formatted-string-literals
https://docs.python.org/3/reference/lexical_analysis.html#formatted-string-literals

'Approx pi: 3.14286'

rounding is applied
>>> f'{appx_pi:.3f}'
'3.143'

exponential notation
>>> f'{32 ** appx_pi:.2e}'
'5.38e+04'

Here’s some alignment examples:

>>> fruit = 'apple'

>>> f'{fruit:=>10}'
'=====apple'
>>> f'{fruit:=<10}'
'apple====='
>>> f'{fruit:=ˆ10}'
'==apple==='

default is space character
>>> f'{fruit:ˆ10}'
' apple '

You can use b , o and x to display integer values in binary, octal and hexadecimal
formats respectively. Using # before these characters will result in appropriate prefix for
these formats.

>>> num = 42

>>> f'{num:b}'
'101010'
>>> f'{num:o}'
'52'
>>> f'{num:x}'
'2a'

>>> f'{num:#x}'
'0x2a'

str.format() method, format() function and % operator are alternate approaches for
string formatting.

>>> num1 = 22
>>> num2 = 7

>>> 'Output: {} / {} = {:.2f}'.format(num1, num2, num1 / num2)
'Output: 22 / 7 = 3.14'

>>> format(num1 / num2, '.2f')
'3.14'

20

>>> 'Approx pi: %.2f' % (num1 / num2)
'Approx pi: 3.14'

See docs.python: The String format() Method and the sections that follow for more
details about the above features. See docs.python: Format examples for more examples,
including datetime formatting. The Text processing chapter will discuss more about
the string processing methods.

In case you don’t know what a method is, see stackoverflow: What’s the difference
between a method and a function?

User input

The input() built-in function can be used to get data from the user. It also allows an optional
string to make it an interactive process. It always returns a string data type, which you can
convert to another type (explained in the next section).

Python will wait until you type your data and press the Enter key
the blinking cursor is represented by a rectangular block shown below
>>> name = input('what is your name? ')
what is your name? █

Here’s the rest of the above example.

>>> name = input('what is your name? ')
what is your name? learnbyexample

note that newline isn't part of the value saved in the 'name' variable
>>> print(f'pleased to meet you {name}.')
pleased to meet you learnbyexample.

Type conversion

The type() built-in function can be used to know what data type you are dealing with. You can
pass any expression as an argument.

>>> num = 42
>>> type(num)
<class 'int'>

>>> type(22 / 7)
<class 'float'>

>>> type('Hi there')
<class 'str'>

21

https://docs.python.org/3/tutorial/inputoutput.html#the-string-format-method
https://docs.python.org/3/library/string.html#format-examples
https://stackoverflow.com/q/155609/4082052
https://stackoverflow.com/q/155609/4082052
https://docs.python.org/3/library/functions.html#input
https://docs.python.org/3/library/functions.html#type

The built-in functions int(), float() and str() can be used to convert from one data type to another.
These function names are the same as their data type class names seen above.

>>> num = 3.14
>>> int(num)
3
you can also use f'{num}'
>>> str(num)
'3.14'

>>> usr_ip = input('enter a float value ')
enter a float value 45.24e22
>>> type(usr_ip)
<class 'str'>
>>> float(usr_ip)
4.524e+23

See docs.python: Built-in Functions for documentation on all of the built-in functions.
You can also use help() function from the REPL as discussed in the Documentation
and getting help section.

Exercises

• Read about Bytes literals from docs.python: String and Bytes literals. See also stack-
overflow: What is the difference between a string and a byte string?

• If you check out docs.python: int() function, you’ll see that the int() function accepts
an optional argument. As an example, write a program that asks the user for hexadecimal
number as input. Then, use int() function to convert the input string to an integer
(you’ll need the second argument for this). Add 5 and display the result in hexadecimal
format.

• Write a program to accept two input values. First can be either a number or a string
value. Second is an integer value, which should be used to display the first value in
centered alignment. You can use any character you prefer to surround the value, other
than the default space character.

• What happens if you use a combination of r , f and other such valid prefix characters
while declaring a string literal? What happens if you use raw strings syntax and provide
only a single \ character? Does the documentation describe these cases?

• Try out at least two format specifiers not discussed in this chapter.
• Given a = 5 , get '{5}' as the output using f-strings.

22

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#str
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/reference/lexical_analysis.html#strings
https://stackoverflow.com/q/6224052/4082052
https://stackoverflow.com/q/6224052/4082052
https://docs.python.org/3/library/functions.html#int

Defining functions

This chapter will discuss how to define your own functions, pass arguments to them and get
back results. You’ll also learn more about the print() built-in function.

def

Use def keyword to define a function. The function name is specified after the keyword,
followed by arguments inside parentheses and finally a : character to end the definition.
It is a common mistake for beginners to miss the : character. Arguments are optional, as
shown in the below program.

no_args.py
def greeting():

print('-----------------------------')
print(' Hello World ')
print('-----------------------------')

greeting()

The above code defines a function named greeting and contains three statements as part
of the function. Unlike many other programming languages, whitespaces are significant in
Python. Instead of a pair of curly braces, indentation is used to distinguish the body of the
function and statements outside of that function. Typically, 4 spaces is used, as shown above.
The function call greeting() has the same indentation level as the function definition, so
it is not part of the function. For readability, an empty line is used to separate the function
definition and subsequent statements.

$ python3.9 no_args.py

Hello World

Functions have to be declared before they can be called. As an exercise, call the
function before declaration and see what happens for the above program.

As per PEP 8: Style Guide for Python Code, it is recommended to use two blank
lines around top level functions. However, I prefer to use a single blank line. For large
projects, specialized tools like pylint and black are used to analyze and enforce coding
styles/guidelines.

To create a placeholder function, you can use the pass statement to indicate no
operation. See docs.python: pass statement for details.

23

https://www.python.org/dev/peps/pep-0008/
https://pypi.org/project/pylint/
https://pypi.org/project/black/
https://docs.python.org/3/reference/simple_stmts.html#the-pass-statement

Accepting arguments

Functions can accept one or more arguments, specified as comma separated variable names.

with_args.py
def greeting(ip):

op_length = 10 + len(ip)
styled_line = '-' * op_length
print(styled_line)
print(f'{ip:ˆ{op_length}}')
print(styled_line)

greeting('hi')
weather = 'Today would be a nice, sunny day'
greeting(weather)

In this script, the function from the previous example has been modified to accept an input
string as the sole argument. The len() built-in function is used here to get the length of a
string value. The code also showcases the usefulness of variables, string operators and string
formatting.

$ python3.9 with_args.py

hi

--

Today would be a nice, sunny day
--

As an exercise, modify the above program as suggested below and observe the results you
get.

• add print statements for ip , op_length and styled_line variables at the end of
the program (after the function calls)

• pass a numeric value to the greeting() function
• don’t pass any argument while calling the greeting() function

The argument variables, and those that are defined within the body, are local to
the function and would result in an exception if used outside the function. See also
docs.python: Scopes and Namespaces and docs.python: global statement.

Python being a dynamically typed language, it is up to you to sanitize input for
correctness. See also docs.python: Support for type hints and realpython: Python Type
Checking Guide.

24

https://docs.python.org/3/library/functions.html#len
https://docs.python.org/3/tutorial/classes.html#scopes-and-namespaces-example
https://docs.python.org/3/reference/simple_stmts.html#the-global-statement
https://docs.python.org/3/library/typing.html
https://realpython.com/python-type-checking/
https://realpython.com/python-type-checking/

Default valued arguments

A default value can be specified during the function definition. Such arguments can be skipped
during the function call, in which case they’ll use the default value. They are also known as
keyword arguments. Here’s an example:

default_args.py
def greeting(ip, style='-', spacing=10):

op_length = spacing + len(ip)
styled_line = style * op_length
print(styled_line)
print(f'{ip:ˆ{op_length}}')
print(styled_line)

greeting('hi')
greeting('bye', spacing=5)
greeting('hello', style='=')
greeting('good day', ':', 2)

There are various ways in which you can call functions with default values. If you specify the
argument name, they can be passed in any order. But, if you pass values positionally, the order
has to be same as the declaration.

$ python3.9 default_args.py

hi

bye

===============

hello
===============
::::::::::
good day
::::::::::

As an exercise, modify the above script for the below requirements.

• make the spacing work for multicharacter style argument
• accept another argument with a default value of single space character that determines
the character to be used around the centered ip value

As another exercise, what do you thinkwill happen if you use greeting(spacing=5, ip='Oh!')
to call the function shown above?

Arguments declared without default values can still be used as keyword arguments
during function call. This is the default behavior. Python provides special constructs /
and * for stricter separation of positional and keyword arguments. See docs.python:
Special parameters for details.

25

https://docs.python.org/3/tutorial/controlflow.html#special-parameters
https://docs.python.org/3/tutorial/controlflow.html#special-parameters

Return value

The default return value of a function is None , which is typically used to indicate the ab-
sence of a meaningful value. The print() function, for example, has a None return value.
Functions like int() , len() and type() have specific return values, as seen in prior
examples.

>>> print('hi')
hi
>>> value = print('hi')
hi

>>> value
>>> print(value)
None
>>> type(value)
<class 'NoneType'>

Use the return statement to explicitly give back a value when the function is called. You
can use this keyword by itself as well (default value is None).

>>> def num_square(n):
... return n * n
...
>>> num_square(5)
25
>>> num_square(3.14)
9.8596

>>> op = num_square(-42)
>>> type(op)
<class 'int'>

On encountering a return statement, the function will be terminated and further
statements, if any, present as part of the function body will not be executed.

A common beginner confusion is mixing up the print() function and the return
statement. See stackoverflow: What is the formal difference between “print” and “re-
turn”? for examples and explanations.

A closer look at the print() function

The help documentation for the print() function is shown below.

26

https://stackoverflow.com/q/7664779/4082052
https://stackoverflow.com/q/7664779/4082052

As you can see, there are four default valued arguments. But, what does value, ..., mean?
It indicates that the print() function can accept arbitrary number of arguments. Here’s
some examples:

newline character is appended even if no arguments are passed
>>> print()

>>> print('hi')
hi
>>> print('hi', 5)
hi 5

>>> word1 = 'loaf'
>>> word2 = 'egg'
>>> print(word1, word2, 'apple roast nut')
loaf egg apple roast nut

If you observe closely, you’ll notice that a space character is inserted between the arguments.
That separator can be changed by using the sep argument.

>>> print('hi', 5, sep='')
hi5
>>> print('hi', 5, sep=':')
hi:5
>>> print('best', 'years', sep='.\n')
best.
years

Similarly, you can change the string that gets appended to something else.

>>> print('hi', end='----\n')
hi----
>>> print('hi', 'bye', sep='-', end='\n======\n')
hi-bye
======

The file argument will be discussed later. Writing your own function to accept
arbitrary number of arguments will also be discussed later.

27

Docstrings

Triple quoted strings are also used for multiline comments and to document various part of a
Python script. The latter is achieved by adding help content within triple quotes at the start
of a function, class, etc. Such literals are known as documentation strings, or docstrings for
short. The help() function reads these docstrings to display the documentation. There are
also numerous third-party tools that make use of docstrings.

Here’s an example:

>>> def num_square(n):
... """
... Returns the square of a number.
... """
... return n * n
...
>>> help(num_square)

Calling help(num_square) will give you the documentation as shown below.

num_square(n)
Returns the square of a number.

See docs.python: Documentation Strings for usage guidelines and other details.

28

https://docs.python.org/3/tutorial/controlflow.html#documentation-strings

Control structures

This chapter will discuss various operators used in conditional expressions, followed by control
structures.

Comparison operators

These operators yield True or False boolean values as a result of comparison between
two values.

>>> 0 != '0'
True
>>> 0 == int('0')
True
>>> 'hi' == 'Hi'
False

>>> 4 > 3.14
True
>>> 4 >= 4
True

>>> 'bat' < 'at'
False
>>> 2 <= 3
True

Python is a strictly typed language. So, unlike context-based languages like Perl,
you have to explicitly use type conversion when needed. As an exercise, try using any
of the < or <= or > or >= operators between numeric and string values.

See docs.python: Comparisons and docs.python: Operator precedence for documen-
tation and other details.

Truthy and Falsy values

The values by themselves have Truthy and Falsy meanings when used in a conditional context.
You can use the bool() built-in function to explicitly convert them to boolean values.

For numbers, zero evaluates to False and True otherwise. An empty string evaluates to
False and True otherwise. The None value evaluates to False . See docs.python: Truth
Value Testing for more details.

>>> type(True)
<class 'bool'>
>>> type(False)

29

https://docs.python.org/3/library/stdtypes.html#comparisons
https://docs.python.org/3/reference/expressions.html#operator-precedence
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#truth-value-testing
https://docs.python.org/3/library/stdtypes.html#truth-value-testing

<class 'bool'>

>>> bool(4)
True
>>> bool(0)
False
>>> bool(-1)
True

>>> bool('')
False
>>> bool('hi')
True

>>> bool(None)
False

Boolean operators

Use and and or boolean operators to combine comparisons. The not operator is useful
to invert a condition.

>>> 4 > 3.14 and 2 <= 3
True

>>> 'hi' == 'Hi' or 0 != '0'
True

>>> not 'bat' < 'at'
True
>>> num = 0
>>> not num
True

The and and or operators are also known as short-circuit operators. These will evaluate
the second expression if and only if the first one evaluates to True and False respectively.
Also, these operators return the result of the expressions used, which can be a non-boolean
value. The not operator always returns a boolean value.

>>> num = 5
here, num ** 2 will NOT be evaluated
>>> num < 3 and num ** 2
False
here, num ** 2 will be evaluated as the first expression is True
>>> num < 10 and num ** 2
25
not operator always gives a boolean value
>>> not (num < 10 and num ** 2)
False

30

>>> 0 or 3
3
>>> 1 or 3
1

Comparison chaining

You can chain comparison operators, which is similar to mathematical notations. Apart from
terser conditional expression, this also has the advantage of having to evaluate the middle
expression only once.

>>> num = 5

using boolean operator
>>> num > 3 and num <= 5
True

comparison chaining
>>> 3 < num <= 5
True
>>> 4 < num > 3
True
>>> 'bat' < 'cat' < 'cater'
True

Membership operator

The in comparison operator checks if a given value is part of a collection of values. Here’s
an example with range() function:

>>> num = 5
range() will be discussed in detail later in this chapter
this checks if num is one among the integers 3 or 4 or 5
>>> num in range(3, 6)
True

You can build your own collection of values using various data types like list , set , tuple
etc. These data types will be discussed in later chapters.

>>> num = 21
>>> num == 10 or num == 21 or num == 33
True
RHS value here is a tuple data type
>>> num in (10, 21, 33)
True

>>> 'cat' not in ('bat', 'mat', 'pat')
True

31

When applied to strings, the in operator performs substring comparison.

>>> fruit = 'mango'
>>> 'an' in fruit
True
>>> 'at' in fruit
False

if-elif-else

Similar to function definition, control structures require indenting its body of code. And,
there’s a : character after you specify the conditional expression. You should be already
familiar with if and else keywords from other programming languages. Alternate con-
ditional branches are specified using the elif keyword. You can nest these structures and
each branch can have one or more statements.

Here’s an example of if-else structure within a user defined function. Note the use of
indentation to separate different structures. Examples with elif keyword will be seen in
later chapters.

odd_even.py
def isodd(n):

if n % 2:
return True

else:
return False

print(f'{isodd(42) = }')
print(f'{isodd(-21) = }')
print(f'{isodd(123) = }')

Here’s the output of the above program.

$ python3.9 odd_even.py
isodd(42) = False
isodd(-21) = True
isodd(123) = True

As an exercise, reduce the isodd() function body to a single statement instead of four. This
is possible with features already discussed in this chapter, the ternary operator discussed in
the next section would be an overkill.

Python doesn’t have a switch control structure. See stackoverflow: switch state-
ment in Python? for workarounds.

Ternary operator

Python doesn’t support the traditional ?: ternary operator syntax. Instead, it uses if-else
keywords in the same line as illustrated below.

32

https://stackoverflow.com/q/60208/4082052
https://stackoverflow.com/q/60208/4082052

def absolute(num):
if num >= 0:

return num
else:

return -num

The above if-else structure can be rewritten using ternary operator as shown below:

def absolute(num):
return num if num >= 0 else -num

Or, just use the abs() built-in function, which has support for complex numbers, fractions, etc.
Unlike the above program, abs() will also handle -0.0 correctly.

See stackoverflow: ternary conditional operator for other ways to emulate the
ternary operation in Python. True and False boolean values are equivalent to
1 and 0 in integer context. So, for example, the above ternary expression can also
be written as (-num, num)[num >= 0] .

for loop

Counter based loop can be constructed using the range() built-in function and the in operator.
The range() function can be called in the following ways:

range(stop)
range(start, stop)
range(start, stop, step)

Both ascending and descending order arithmetic progression can be constructed using these
variations. When skipped, default values are start=0 and step=1 . For understanding
purposes, a C like code snippet is shown below:

ascending order
for(i = start; i < stop; i += step)

descending order
for(i = start; i > stop; i += step)

Here’s is a sample multiplication table:

>>> num = 9
>>> for i in range(1, 5):
... print(f'{num} * {i} = {num * i}')
...
9 * 1 = 9
9 * 2 = 18
9 * 3 = 27
9 * 4 = 36

The range , list , tuple , str data types (and some more) fall under sequence types.

33

https://docs.python.org/3/library/functions.html#abs
https://stackoverflow.com/q/394809/4082052
https://docs.python.org/3/library/functions.html#range

There are multiple operations that are common to these types (see docs.python: Common
Sequence Operations for details). For example, you could iterate over these types using the
for loop. The start:stop:step slicing operation is another commonality among these
types. You can test your understanding of slicing syntax by converting range to list or
tuple type.

>>> list(range(5))
[0, 1, 2, 3, 4]

>>> list(range(2, 11, 2))
[2, 4, 6, 8, 10]

>>> list(range(120, 99, -4))
[120, 116, 112, 108, 104, 100]

As an exercise, create this arithmetic progression -2, 1, 4, 7, 10, 13 using the range()
function. Also, see what value you get for each iteration of for c in 'hello' .

while loop

Use while loop when you want to execute statements as long as the condition evaluates to
True . Here’s an example:

countdown.py
count = int(input('Enter a positive integer: '))
while count > 0:

print(count)
count -= 1

print('Go!')

Here’s a sample run of the above script:

$ python3.9 countdown.py
Enter a positive integer: 3
3
2
1
Go!

Python doesn’t support ++ or -- operations. As shown in the above program,
combining arithmetic operations with assignment is supported.

break and continue

The break statement is useful to quit the current loop immediately. Here’s an example where
you can keep getting the square root of a number until you enter an empty string.

34

https://docs.python.org/3/library/stdtypes.html#common-sequence-operations
https://docs.python.org/3/library/stdtypes.html#common-sequence-operations

>>> while True:
... num = input('enter a number: ')
... if len(num) == 0:
... break
... print(f'square root of {num} is {float(num) ** 0.5:.4f}')
...
enter a number: 2
square root of 2 is 1.4142
enter a number: 3.14
square root of 3.14 is 1.7720
enter a number:
>>>

See also stackoverflow: breaking out of nested loops.

When continue is used, further statements are skipped and the next iteration of the loop is
started, if any. This is frequently used in file processing when you need to skip certain lines
like headers, comments, etc.

>>> for num in range(10):
... if num % 3:
... continue
... print(f'{num} * 2 = {num * 2}')
...
0 * 2 = 0
3 * 2 = 6
6 * 2 = 12
9 * 2 = 18

As an exercise, use appropriate range() logic so that the if statement is no longer needed.

See docs.python: break, continue, else for more details and the curious case of
else clause in loops.

Assignment expression

Quoting from docs.python: Assignment expressions:

An assignment expression (sometimes also called a “named expression” or “walrus”)
assigns an expression to an identifier, while also returning the value of the expression.

The while loop snippet from the previous section can be re-written using assignment expres-
sion as shown below:

>>> while len(num := input('enter a number: ')) > 0:
... print(f'square root of {num} is {float(num) ** 0.5:.4f}')

35

https://stackoverflow.com/q/653509/4082052
https://docs.python.org/3/tutorial/controlflow.html#break-and-continue-statements-and-else-clauses-on-loops
https://docs.python.org/3/reference/expressions.html#assignment-expressions

...
enter a number: 2
square root of 2 is 1.4142
enter a number: 3.14
square root of 3.14 is 1.7720
enter a number:
>>>

See PEP 572: Assignment Expressions and my book on regular expressions for more
details and examples.

Exercises

• If you don’t already know about FizzBuzz, read Using FizzBuzz to Find Developers who
Grok Coding and implement it in Python. See also Why Can’t Programmers.. Program?

• Print all numbers from 1 to 1000 (inclusive) which reads the same in reversed form
in both binary and decimal format. For example, 33 in decimal is 100001 in binary
and both of these are palindromic. You can either implement your own logic or search
online for palindrome testing in Python.

• Write a function that returns the maximum nested depth of curly braces for a given
string input. For example, '{{a+2}*{{b+{c*d}}+e*d}}' should give 4 . Unbalanced
or wrongly ordered braces like '{a}*b{' and '}a+b{' should return -1 .

If you’d like even more exercises to test your understanding, check out these excellent re-
sources:

• Exercism, Practicepython— beginner friendly, problems aremarkedwith difficulty levels
• Codewars, Adventofcode, Projecteuler — more challenging
• Checkio, Codingame, Codecombat — gaming based challenges
• /r/dailyprogrammer — not active currently, but there are plenty of past challenges, along
with discussions

36

https://www.python.org/dev/peps/pep-0572/
https://learnbyexample.github.io/py_regular_expressions/working-with-matched-portions.html#assignment-expressions
https://imranontech.com/2007/01/24/using-fizzbuzz-to-find-developers-who-grok-coding/
https://imranontech.com/2007/01/24/using-fizzbuzz-to-find-developers-who-grok-coding/
https://blog.codinghorror.com/why-cant-programmers-program/
https://exercism.io/tracks/python/exercises
https://www.practicepython.org/
https://www.codewars.com/
https://adventofcode.com/
https://projecteuler.net/
https://py.checkio.org/
https://www.codingame.com/start
https://codecombat.com/
https://www.reddit.com/r/dailyprogrammer

	Preface
	Prerequisites
	Motivation and FAQ
	Conventions
	Acknowledgements
	Feedback and Errata
	Author info
	License
	Book version

	Introduction
	Installation
	Online tools
	First program
	IDE and text editors
	REPL
	Documentation and getting help

	Numeric data types
	int
	float
	Arithmetic operators
	Operator precedence
	Integer formats
	Other numeric types

	Strings and user input
	Single and double quoted strings
	Triple quoted strings
	Raw strings
	String operators
	String formatting
	User input
	Type conversion
	Exercises

	Defining functions
	def
	Accepting arguments
	Default valued arguments
	Return value
	A closer look at the print() function
	Docstrings

	Control structures
	Comparison operators
	Truthy and Falsy values
	Boolean operators
	Comparison chaining
	Membership operator
	if-elif-else
	Ternary operator
	for loop
	while loop
	break and continue
	Assignment expression
	Exercises

